

TOPSIDE Detector

Chao Peng

Argonne National Laboratory

March 17, 2021

Science and Instrumentation of the 2nd Interaction Region for the EIC

Outline

• EIC Detector Requirements

TOPSiDE Detector

• Development of Key Technologies for TOPSiDE

Simulation Toolkit

What Will EIC Do?

Key Science Questions to be Addressed

EIC Yellow Report EIC White Paper

- Emergence of nucleon mass and spin
- Multi-dimensional parton distributions
- Quark, gluon, and jets interactions with a nuclear medium
- Emergence of confined hadronic states and nuclear bindings.
- Gluon density in nuclei and dense gluonic matter

Measurements at EIC

EIC Yellow Report

Physics	Process	Measurement Challenges
Origin of Nucleon Spin	Polarized DIS	Precise electron measurement Good hardon measurement Control of radiative corrections
Origin of Nucleon Mass	Quarkonium production	High luminosity Precise measurement of electrons at low-Q ² Recoil proton detection (very forward angles)
Multi-Dimensional Imaging of the Nucleon	Semi-Inclusive DIS	$\pi/K/p$ separation
Transverse Spatial Distributions of Partons	Exclusive process (DVCS, DVMP,)	Forward proton, e, γ measurements
Nucleus' sea quark and gluon structure	Inclusive, semi-inclusive DIS on nuclei	Good tracking and forward calorimetry Very forward measurement of diffractive process
Nuclear PDFs	Inclusive DIS on nuclei Charm production	Good impact parameter resolution
Passage of Color Charge Through Cold QCD Matter	Jets	High center-of-mass energy Good tracking and calorimetry Good hardonic energy resolution at forward region
Many More		

Requirements for EIC Detector

TOPSIDE for EIC

Measure (E, x, y, z, t) for every hit in tracker + calorimeter

Silicon pixel vertex + strip tracker
Sampling calorimeter
Superconducting solenoid (3T)
Forward gaseous RICH + silicon disks + calorimetry
Backward silicon disks + crystal calorimeter

Particle identification ($\pi/K/p$ separation)

Particle momenta < 7 GeV/c for central barrel with trackers + calorimeters

Trackers + Forward RICH for forward/backward region

Ultra-fast silicon sensors with time resolution of about 10 ps

Minimizes

The material between vertex and ECal, The number of subsystems

Time-of-flight Optimized PID Silicon Detector

Calorimetrers

- Sampling EM calorimeter for central barrel
 - Good energy resolution
 - Excellent spatial resolution
 - Energy deposit profiling, PID between electron/hadron
- Homogeneous crystal calorimeter for backward end-cap
 - Excellent energy resolution
 - Good spatial resolution
- Preshower Calorimeter, Hadron Calorimeter, ...

Ultra-fast Silicon Sensors

Development of Low Gain Avalanche Diodes (LGADs)

LGAD Consortium: Argonne, BNL, and UC Santa Cruz Additional p-layer close to anode Modest multiplication by factor of 10 – 50

- → Amplification of electrons close to pixel (minimal drift)
- → Improvement in time resolution

Can be used in

EM calorimeter and tracker for Particle ID $(\pi - K - p \text{ separation})$

Full detector simulation

Single particles in barrel region GEANT4, digitization, reconstruction

Reconstructed mass
$$\left(\frac{\Delta m}{m}\right)^2 = \left(\frac{\Delta p}{p}\right)^2 + \gamma^4 \left[\left(\frac{\Delta t}{t}\right)^2 + \left(\frac{\Delta l}{l}\right)^2\right]$$

Resolution of 10 ps per sensor \rightarrow separation up to \sim 7 GeV/c

M. Jadhav et al., Arxiv:2010.02499

H. F-W Sadrozinski et al., 2018 Rep. Prog. Phys. 81 026101

LGAD Achievement

- LGADs beam test at the Fermilab Test Beam Facility
- Achieved timing resolution of 14.31 ± 1.52 ps
- Normalized signal amplitude vs. Bias Voltage
- Very short rise time of ~350-400 ps were obtained
- Signal Amplitude, Signal to Noise Ratio, Jitter, Rise
 Time as function of voltage bias and temperature
- M. Jadhav et al., arXiv:2010.02499; Accepted at JINST

LGAD Development Ongoing

Argonne Micro-Assembly facility

- Probe Station
- Thermal Chamber
- Wire-Bonders
- SmartScope ZIP for Metrology
- 3D printer
- ATLAS telescope and LGAD test setup

- Recent test at Fermilab Test Beam Facility
 - √ 120 GeV proton beam
 - Different AC-LGAD sensors with multichannel read-out boards
- Designing a telescope structure for multichannel readout system
- Upgrading DAQ from software based CFD to digitizer based: Beyond DSO trigger
- R&D of LGAD sensors and modules
 - Goal is to reach 10 ps of timing resolution
 - Testing CFD read-out boards designed at Argonne
 - Monolithic LGAD simulations and designing

IR2@EIC

Gaseous RICH Detector

Gaseous Ring imaging Cherenkov Detector

- Forward Pion/Kaon/Proton Separation with Imaging of Cherenkov Light Cones
- Gaseous radiator, PID for high energy hadrons (ToF for low energy)
- Photon detection by MCP-PMTs with Pixelated Readout
- Optimizing design with end-to-end simulation toolkit

MCP-PMT for RICH

MCP-PMTs

- **Based on Microchannel Plates**
- High-resolution (spatial + timing), strong magnetic fields tolerance
- Developed by Argonne, UChicago, UC Berkeley
- Tested 6x6 cm² MCP-PMTs with different pixel sizes

4 different pixel sizes (2x2,3x3,4x4 and 5x5 mm²) implemented for testing

J. Xie et al., 2020 JINST 15 C04038

IR2@EIC

LAPPD Beam Test at JLab

Large Area Picosecond Photo Detectors (LAPPD™)

- Now being commercialized by INCOM, Inc.
- Coarse pixelized (25x25 mm²) for Telescope Cherenkov Prototype
- Beam test at Hall C, LAPPD and MaPMTs
- Publication for the first test: arXiv:2011.11769

MCP-PMT Development Ongoing

- Transition to fabrication of 10x10 cm² MCP-PMT
 - 6x6 cm² MCP-PMT was fabricated by an existing facility
 - Building new R&D fabrication facility
 - Commissioning the fabrication facility
 - Fabricate and evaluate several 10x10 cm² MCP-PMTs this summer
 - New facility will serve the EIC community
- Gas-RICH prototype
 - Construct gas-RICH prototype using MCP-PMT as photodetector
 - Evaluate the gas-RICH prototype in beamline

Superconducting Nanowire for Far-forward Hadron Detector

Efficient, fast sensors for a high-radiation, high-field environment.

- Sensors can operate in fields up to (at least) 7T, can operate inside of magnets.
- Novel concept for high-resolution rad-hard detector based around superconducting nanowires (early R&D stage), good potential for near-beamline detector for tagging in the farforward region.
- Capability to fabricate nanowire sensors on-site.
- Developing readout electronics for cold environments, collaborating with Fermilab and Nalu Scientific.

Simulation for TOPSiDE

- Modern tool chain for end-to-end simulation
 DD4Hep, ACTS, Gaudi, ...
- Automized workflow for simulation, digitization, and reconstruction (W. Armstrong's talk on Friday)

Task	Tool
Generate collision events	lAger, Lepto, PYTHIA8, Milou,
Transport of particles through matter	GEANT4
Digitizing the response	Gaudi Framework
Reconstruct tracks	ACTS
Reconstruct particles	Gaudi Framework
Data Model	PodIO
Analyze events	Root
Geometry/Event display	Web-based UI, DAWN,

- Validating and optimizing TOPSiDE design with simulation
 - Forward RICH, sampling calorimeter, silicon trackers, ...

Summary

- EIC environment/physics poses specific challenges to the detector design
- TOPSiDE is a concept detector being developed to address the challenges
 - Minimizes the mass before ECal
 - Reduces the number of subsystems
- Novel Ideas for colliding beam detectors
 - 5D measurement with sampling calorimetry + LGADs
 - Gaseous RICH with MCP-PMTs
- End-to-end simulation toolkit

Thank you!

Back-up Slides

Standard Model of Particle Physics

EIC Reference Detector

Study physics with

Inclusive process

Semi-inclusive process

• Exclusive process

Generic requirements

Electron PID; Precise angle/energy;
 Tracking, EM and hadronic calorimetry

• Hadron PID; Full 2π tracking; Vertexing

Excellent tracking; End-cap hadronic
 calorimetery; Very forward detectors; Zero-degree neutron detection

Time Resolution of Silicon Detectors

Hartmut F-W Sadrozinski et al., 2018 Rep. Prog. Phys. 81 026101

IR2@EIC

Dependence on signal size

→ Minimize using e.g. constant fraction discriminators